Series on mathematical geodesy and positioning Dynamic data processing

Dynamic data processing

This book is a follow-up on Adjustment theory. It extends the theory to the case of time-varying parameters with an emphasis on their recursive determination. Least-squares estimation will be the leading principle used. A least-squares solution is said to be recursive when the method of computation enables sequential, rather than batch, processing of the measurement data. The recursive equations enable the updating of parameter estimates for new observations without the need to store all past observations. Methods of recursive least-squares estimation are therefore particularly useful for applications in which the time-varying parameters need to be instantly determined. Important examples of such applications can be found in the fields of real-time kinematic positioning, navigation and guidance, or multivariate time series analysis. The goal of this book is therefore to convey the necessary knowledge to be able to process sequentially collected measurements for the purpose of estimating time-varying parameters.

When determining time-varying parameters from sequentially collected measurement data, one can discriminate between three types of estimation problems: filtering, prediction and smoothing. Filtering aims at the determination of current parameter values, while smoothing and prediction aim at the determination of respectively past and future parameter values. The emphasis in this book will be on recursive least-squares filtering. The theory is worked out for the important case of linear(ized) models. The measurement-update and time-update equations of recursive least-squares are discussed in detail. Models with sequentially collected data, but time-invariant parameters are treated first.

In this case only the measurement-update equations apply. State-space models for dynamic systems are discussed so as to include time-varying parameters. This includes their linearization and the construction of the state transition matrix. Elements from the theory of random functions are used to describe the propagation laws for linear dynamic systems. The theory is illustrated by means of many worked out examples. They are drawn from applications such as kinematic positioning, satellite orbit determination and inertial navigation.

Contents: Introduction / 1. Least-squares: a review / 2. Recursive least-squares: the static case / 3. Recursive least-squares: the static case / 4. State-space models for dynamic systems / 5. Random functions / 6. Recursive least squares: the dynamic case / Literature / Index

We geven korting vanaf je 4e boek in 12 maanden. Zonder gedoe. Lees meer.
We geven korting vanaf je 4e boek in 12 maanden. Zonder gedoe. Lees meer.

Op werkdagen voor 20:00 uur besteld, volgende werkdag in huis

Gemiddelde beoordeling

  • 0 sterren

Wat vond jij van dit boek?

Hoeveel sterren geef je?

Geef je uitgebreide beoordeling en maak kans op een cadeaukaart ter waarde van €50.

  1. Geef je mening in je eigen woorden, dat is veel leuker om te lezen.
  2. Prijzen kun je beter niet noemen. Die veranderen nog wel eens.
  3. Noem geen persoonlijke informatie over jezelf of anderen, je beoordeling is door iedereen te zien.
  4. Links naar andere leestips? Ja graag! Informatie over andere bedrijven of websites, nee dankje.
  5. Tot slot: blijf netjes, want ongepaste taal kunnen we natuurlijk niet plaatsen.

Voorbeeld beoordeling:

Nog even geduld, je beoordeling komt meestal binnen een dag online!